Mesoscale Processes Contributing to Extreme Rainfall in a Midlatitude Warm-Season Flash Flood*
نویسندگان
چکیده
Observations and numerical simulations are used to investigate the atmospheric processes that led to extreme rainfall and resultant destructive flash flooding in eastern Missouri on 6–7 May 2000. In this event, a quasi-stationary mesoscale convective system (MCS) developed near a preexisting mesoscale convective vortex (MCV) in a very moist environment that included a strong low-level jet (LLJ). This nocturnal MCS produced in excess of 300 mm of rain in a small area to the southwest of St. Louis, Missouri. Operational model forecasts and simulations using a convective parameterization scheme failed to produce the observed rainfall totals for this event. However, convection-permitting simulations using the Weather Research and Forecasting Model were successful in reproducing the quasi-stationary organization and evolution of this MCS. In both observations and simulations, scattered elevated convective cells were repeatedly initiated 50–75 km upstream before merging into the mature MCS and contributing to the heavy rainfall. Lifting provided by the interaction between the LLJ and the MCV assisted in initiating and maintaining the convection. Simulations indicate that the MCS was long lived despite the lack of a convectively generated cold pool at the surface. Instead, a nearly stationary low-level gravity wave helped to organize the convection into a quasi-linear system that was conducive to extreme local rainfall amounts. Idealized simulations of convection in a similar environment show that such a low-level gravity wave is a response to diabatic heating and that the vertical wind profile featuring a strong reversal of the wind shear with height is responsible for keeping the wave nearly stationary. In addition, the convective system acted to reintensify the midlevel MCV and also caused a distinct surface low pressure center to develop in both the observed and simulated system.
منابع مشابه
Assessment of Vulnerability to Extreme Flash Floods in Design Storms
There has been an increase in the occurrence of sudden local flooding of great volume and short duration caused by heavy or excessive rainfall intensity over a small area, which presents the greatest potential danger threat to the natural environment, human life, public health and property, etc. Such flash floods have rapid runoff and debris flow that rises quickly with little or no advance war...
متن کاملA study of twentieth-century extreme rainfall events in the United Kingdom with implications for forecasting
Rainfall events in the United Kingdom during the twentieth century have been surveyed and those identified as extreme by the Flood Studies Report (1975) standards have been examined for common features. Events of duration up to 60 hours were considered in order to investigate those that could cause flash floods. More than half of the 50 events identified were short-period convective storms. The...
متن کاملWarm-season Thermodynamically-driven Rainfall Prediction with Support Vector Machines
Dynamic numerical weather prediction models have been designed to deal with large-scale, highly predictable midlatitude atmospheric patterns. However, the capability of these models to simulate thermodynamically driven warm-season rainfall events, such as afternoon airmass thunderstorm formation in subtropical summers, is highly limited. Current methods of addressing this issue have included en...
متن کاملSimulation of a Flash Flooding Storm at the Steep Edge of the Himalayas*
A flash flood and landslide in the Leh region of the Indus Valley in the Indian state of Jammu and Kashmir on 5–6 August 2010 resulted in hundreds of deaths and great property damage. Observations have led to the hypothesis that the storm, which formed over the Tibetan Plateau, was steered over the steep edge of the plateau by 500-hPa winds and then energized by the ingestion of lower-level moi...
متن کاملQuasi-Stationary, Extreme-Rain-Producing Convective Systems Associated with Midlevel Cyclonic Circulations
This study identifies and examines the common characteristics of several nocturnal midlatitude mesoscale convective systems (MCSs) that developed near mesoscale convective vortices (MCVs) or cutoff lows. All of these MCSs were organized into convective clusters or lines that exhibited back-building behavior, remained nearly stationary for 6–12 h, and produced locally excessive rainfall (greater...
متن کامل